חAmIBIA UחIVERSITY
 OF SCIEחCE AחD TECHחOLOGY
 FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BAMS	LEVEL: 6
COURSE CODE: MAP602S	COURSE NAME: Mathematical Programming
SESSION: January 2020	PAPER: Theory
DURATION: 3 hours	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY QUESTION PAPER	
EXAMINERS	MR. B.E OBABUEKI
	MRS. S. MWEWA
MODERATOR:	DR. A.S EEGUNJOBI

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.
2. Graph papers to be supplied by Examinations Department

Question 1 (8 marks)

Your school is planning to make toques and mitts to sell at the winter festival as a fundraiser. The school's sewing classes divide into two groups - one group can make toques, the other group knows how to make mitts. The sewing teachers are also willing to help. Considering the number of people available and time constraints due to classes, only 150 toques and 120 pairs of mitts can be made each week. Enough material is delivered to the school every Monday morning to make at least a total of 200 items per week. Because the material is being donated by community members, each toque sold makes a profit of $\$ 2$ and each pair of mitts sold makes a profit of $\$ 5$. Model this statement into a linear programme. (DO NOT SOLVE but variables must be unambiguously declared, and constraints must be identifiably named.)

Question 2 (16 marks)

Consider the following linear programming model:
$\begin{array}{ll}\text { Maximize } P=20 a+16 b \\ \text { Subject to } & 5 a+8 b \leq 40 \\ & 8 a+3 b \leq 24 \\ & 9 a+6 b \leq 36 \\ & a ; b \geq 0\end{array}$
2.1 Use graphical method to show that the solution of the model is $a=\frac{8}{7}, b=\frac{30}{7}, P=\frac{640}{7}$. (It is expected that your values from the graph will be in decimal equivalence of these values.)
2.2 Hence determine the value of the slack variable for each of the three constraints.(6)

Question 3 (10 marks)

The model in question 2 above is the dual of the primal model
Minimize $P=40 x+24 y+36 z$
Subject to $\quad 5 x+8 y+9 z \geq 20$
$8 x+3 y+6 z \geq 16$
$x ; y ; z \geq 0$
Use the solution of the dual to transit to and solve for the solution of this primal model. (10)

Question 4 (10 marks)

Consider the following primal model:

```
Maximize \(\quad z=2 x_{1}+3 x_{2}\)
Subject to \(\quad 3 x_{1}-4 x_{2} \geq 2\)
    \(x_{1}+2 x_{2} \leq 6\)
    \(x_{1} \geq 0 ; x_{2}\) unrestricted in sign.
```

Determine the dual of this primal model.

Question 5 (19 marks)

Solve the following linear programme using ONLY the big-M method:
Maximize $P=6 x+9 y$
Subject to $\quad 8 x+6 y \leq 48$
$4 x-6 y=12$
$4 x+3 y \geq 12$
$x ; y \geq 0$

Question 6 (17 marks)

Consider the linear programme:

Maximize $Q=$	$10 x+7 y$	
Subject to	$6 x+5 y \leq 360$	(units of sodium)
	$2 x+y \leq 96$	(units of iron)
	$x \leq 40$	(units of fibre)
	$y \leq 50$	(units of sugar)
	$x ; y \geq 0$	

Sodium comes in packets of 20 units per packet, iron comes in packets of 12 units per packet, fibre and sugar come in packets of 10 units per packet. Use graphical method to determine the shadow price of a packet of sodium.

Use a scale of 2 cm to 10 units on each axis.

Question 7 (20 marks)

The following table shows the cost of transporting one unit of a product from three warehouses (W1, W2, W3 and W4) to three destinations (D1, D2, D3 and D4) as well as the supply and demand capacities of the warehouses and the destinations. No product may be transported from W1 to D3 and from W2 to D4.

	D1	D2	D3	D4	Supply
W1	5	9	-	4	28
W2	6	10	3	-	32
W3	4	2	5	7	60
Demand	48	29	40	33	

6.1 Use the Least-cost method to determine the initial feasible distribution of product to minimize total cost.
6.2 Use the North-west method to determine the initial feasible distribution of product to
minimize total cost.
6.3 Which of the two methods above is preferable and why?

